

VCE Specialist Mathematics 3&4

Exam Revision Planner

My Goals:

My Ideal Study Score:

DT Education | Coaching for VCE Success | www.dt-education.com.au

Area of Study 1: Logic and Proof	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
Conjecture – making a statement to be proved or disproved				
Implications, equivalences and if and only if statements (necessary and sufficient conditions)				
Natural deduction and proof techniques: direct proofs using a sequence of direct implications, proof by cases, proof by contradiction, and proof by contrapositive				
Quantifiers 'for all' and 'there exists', examples and counter-examples				
Proof by mathematical induction				
Area of Study 2: Functions, Relations and Graphs				
Rational functions and the expression of rational functions of low degree as sums of partial fractions				
Graphs of rational functions of low degree, their asymptotic behaviour, and the nature and location of stationary points and points of inflection				
Graphs of simple quotient functions, their asymptotic behaviour, and the nature and location of stationary points and points of inflection				

Area of Study 3: Complex Numbers	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
De Moivre's theorem, proof for integral powers, powers and roots of complex numbers in polar form, and their geometric representation and interpretation				
The $n^{ m th}$ roots of unity and other complex numbers and their location in the complex plane				
Factors over <i>C</i> , of polynomials; and introduction to the fundamental theorem of algebra, including its application to factorisation of polynomial functions of a single variable over <i>C</i> , for example, $z^8 + 1$, $z^2 - i$ or $z^3 - (2 - i)z^2 + z - 2 + i$				
Solution over C of polynomial equations by completing the square, use of the quadratic factorisation and the conjugate root theorem				

Area of Study 4: Differential Calculus and Integral Calculus	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
The relationship between the graph of a function and the graphs of its anti-derivative functions				
Derivatives of inverse circular functions				
Second derivatives, use of notations $f''(x)$ and $\frac{d^2y}{dx^{2'}}$ and their application to the analysis of graphs of functions, including points of inflection and concavity				
Applications of chain rule to related rates of change and implicit differentiation; for example, implicit differentiation of the relations $x^2 + y^2 = 9$, $3xy^2 = x + y$ and $x \sin(y) + x^2 \cos(y) = 1$				
 Techniques of anti-differentiation and for the evaluation of definite integrals: Anti-differentiation of ¹/_x to obtain log_e x Anti-differentiation of ¹/_{√a²-x²} and ^a/_{a²+x²} for a > 0 by recognition that they are derivatives of corresponding inverse circular functions Use of the substitution u = g(x) to anti-differentiate expressions Use of the trigonometric identities sin²(ax) = ¹/₂(1 - cos(2ax)) and cos²(ax) = ¹/₂(1 + cos(2ax)) in anti-differentiation techniques Anti-differentiation using partial fractions of rational functions 				
Numerical and symbolic integration using technology				
Application of integration, areas of regions bounded by curves, arc lengths for parametrically determined curves, surface area of solids of revolution, volumes of solids of revolution of a region about either coordinate axis				

Area of Study 4 (cont): Differential Equations	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
Formulation of differential equations from contexts in, for example, chemistry, biology and economics, in situations where rates are involved (including some differential equations whose analytic solutions are not required, but can be solved numerically				
using technology) The logistic differential equation				
Verification of solutions of differential equations and their representation using direction (slope) fields				
solution of simple differential equations of the form $\frac{dy}{dx} = f(x)$, $\frac{dy}{dx} = g(y)$ and in general differential equations of the form $\frac{dy}{dx} = f(x)g(y)$ using separation of variables and differential equations of the form $\frac{d^2y}{dx^2} = f(x)$				
Numerical solution by Euler's method (first order approximation)				
Area of Study 4 (cont): Kinematics				
Use of velocity-time graphs to describe and analyse rectilinear motion				
Application of differentiation, anti-differentiation and solution of differential equations to rectilinear motion of a single particle, including the different derivative forms for acceleration $a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v \frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$				

Area of Study 5: Vectors	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
Addition and subtraction of vectors and their multiplication by a scalar, position vectors				
Linear dependence and independence of a set of vectors and geometric interpretation				
Magnitude of a vector, unit vector, the orthogonal unit vectors, $i,\ j \\ \sim \ \sim$				
Resolution of a vector into rectangular components				
Scalar (dot) product of two vectors, deduction of dot product for the i, j and k vector system and its use to find scalar resolute and vector resolute				
Vector (cross) product of two vectors in three dimensions, including the determinant form				
Parallel and perpendicular vectors				
Vector proofs of simple geometric results, such as 'the diagonals of a rhombus are perpendicular', 'the medians of a triangle are concurrent' and 'the angle subtended by a diameter in a circle is a right angle'				

Area of Study 5 (cont): Vector and Cartesian Equations	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
Vector equations and parametric equations of curves in two or three dimensions involving a parameter (and the corresponding cartesian equation in the two-dimensional case)				
Vector equation of a straight line, given the position of two points, or equivalent information, in both two and three dimensions				
Vector cross product, normal to a plane and vector, parametric and cartesian equations of a plane				
Area of Study 5 (cont): Vector Calculus				
Position vector as a function of time and sketching the corresponding path given the function, including circles, ellipses and hyperbolas in cartesian or parametric forms				
The positions of two particles each described as a vector function of time, and whether their paths cross or if the particles meet				
Differentiation and anti-differentiation of a vector function with respect to time and applying vector calculus to motion in a plane and in three dimensions				

Area of Study 6: Distribution of Linear Combinations of Random Variables	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
for <i>n</i> independent identically distributed random variables $X_1, X_2 \dots X_n$ each with mean μ and variance σ^2 :				
• $E(X_1 + X_2 + \dots + X_n) = n\mu$ • $Var(X_1 + X_2 + \dots + X_n) = n\sigma^2$				
For <i>n</i> independent random variables $X_1, X_2 \dots X_n$ and real numbers $a_1, a_2 \dots a_n$: • $E(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n)$ • $Var(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1^2Var(X_1) + a_2^2Var(X_2) + \dots + a_n^2Var(X_n)$				
for <i>n</i> normally distributed independent random variables $X_1, X_2,, X_n$ and real numbers $a_1, a_2,, a_n$ the random variable $a_1X_1 + a_2X_2 + \cdots + a_nX_n$ is also normally distributed				

Area of Study 6 (cont): Distribution of the Sample Mean	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
The concept of the sample mean $ar{X}$ as a random variable whose value varies between samples where X is a random variable with mean μ and the standard deviation σ				
Simulation of repeated random sampling, from a variety of distributions and a range of sample sizes, to illustrate properties of the distribution of \overline{X} across samples of a fixed				
size n including its mean μ its standard deviation $\frac{\sigma}{\sqrt{n}}$ (where μ and σ are the mean and standard deviation of X respectively) and its approximate normality if n is large				
Area of Study 6 (cont): Confidence Intervals for the Population Mean				
Determination of confidence intervals for means and the use of simulation to illustrate variations in confidence intervals between samples and to show that the likelihood of a confidence interval containing μ depends on the level of confidence chosen in the determination of the interval				
Construction of an approximate confidence interval, $\left(\bar{x} - z \frac{\sigma}{\sqrt{n}}, \bar{x} + z \frac{\sigma}{\sqrt{n}}\right)$ where σ is the population standard deviation and z is the appropriate quantile for the standard normal distribution or construction of an approximate confidence interval				
$\left(\bar{x} - z \frac{s}{\sqrt{n}}, \bar{x} + z \frac{s}{\sqrt{n}}\right)$ where s is the sample standard deviation and z is the appropriate quantile for the standard normal distribution, and n is large ($n \ge 30$ in many practical contexts).				

Area of Study 6 (cont): Hypothesis Testing for a Population Mean	Finish Summary Notes by:	Completed ☑	Reviewed ☑	My Notes
Concepts of null hypothesis, H_0 , and alternative hypotheses, H_1 , test statistic				
Level of significance and <i>p</i> -value				
 Formulation of hypotheses and making a decision concerning a population mean based on: a random sample from a normal population of known variance a large random sample from any population 				
1-tail and 2-tail tests				
Interpretation of the results of a hypothesis test in the context of the problem				
Hypothesis test, relating the formulation, conduct, errors and results in terms of conditional probability				

Exam 1 Date: _____

Prac	ctice Exam Schedule (Exam 1)	Complete by	Completed ☑	Score	Notes
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Exam 2 Date: _____

Prac	ctice Exam Schedule (Exam 2)	Complete by	Completed ☑	Score	Notes
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					